

Blood 142 (2023) 4618-4620

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

637.MYELODYSPLASTIC SYNDROMES - CLINICAL AND EPIDEMIOLOGICAL

Clinical and Molecular Spectrum of Somatic Mosaic States in DDX41 mutant Germline Predisposition Syndromes

Talha Badar, MD¹, Terra L Lasho, PhD², Yael Kusne, MDPhD³, Ludovica Marando², Abhishek A Mangaonkar, MBBS², Christy M Finke⁴, James M. Foran, MD⁵, Aref Al-Kali, MD⁶, Hassan Alkhateeb, MD⁶, Naseema Gangat, MBBS⁶, Rong He, MD⁷, David Viswanatha, MD², Mark R. Litzow, MD⁶, Timothy Chlon, PhD⁸, Alejandro Ferrer, PhD⁶, Mrinal M. Patnaik, MD MBBS⁴

¹ Division of Hematology-Oncology, Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL

- ²Mayo Clinic, Rochester, MN
- ³Mayo Clinic, Pheonix, AZ
- ⁴ Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
- ⁵Hematology/Oncology, Mayo Clinic, Jacksonville, FL
- ⁶Division of Hematology, Mayo Clinic, Rochester, MN
- ⁷ Division of Hematopathology, Mayo Clinic, Rochester, MN
- ⁸Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH

Introduction:

Germline DEAD-box RNA helicase-1 mutant (DDX41) predisposition syndrome (*DDX41*-MT-GPS) is one of the most frequent hereditary predisposition syndromes in adults with myeloid neoplasms (MN-2-5%). Somatic mosaicism involving the unmutated *DDX41* allele (e.g., R525H) as a potential mechanism for myeloid evolution has been reported in 39-50% of patients (pts). In addition, given the later age of onset, somatic mosaic states composed of age-related clonal hematopoiesis (ARCH) (e.g., *DNMT3A, ASXL1, TET2,* and *TP53*), with reported frequencies less than expected in MDS and AML, have been documented. We conducted this study to define the somatic mosaic landscape in *DDX41*-MT-GPS.

Methods:

After approval from the Mayo Clinic IRB the prospective GPS database was queried for pts with DDX41-MT GPS. Germline confirmation was conducted on skin fibroblast-, or hair follicle-derived DNA. Somatic CH testing was conducted using a targeted NGS panel as previously described. Given the high frequency of variants of undetermined significance (VUS), comparisons were made between pathogenic (DDX41 ^{path}) and DDX41 ^{VUS}.

Results: We identified 106 pts with *DDX41*-MT-GPS, of which 83 (78%) met criteria for MN, 16 (15%) for CH/CCUS (clonal cytopenias of undetermined significance), while 7 (6%) were unaffected carriers.

Somatic mosaicism in DDX41-GPS patients without MN

Sixteen *DDX41*-MT pts without MN met criteria for CH/CCUS (*DDX41* ^{path} [n=4] and *DDX41* ^{VUS} [n=12]; median age 69 years (yrs) (range [R], 19-78) (*DDX41* ^{path} [69 yrs] and *DDX41* ^{VUS} [67 yrs], p=0.85), with a male predilection (75%). Four (25%) pts had somatic *DDX41* MT (R525H [n=3] and A376T [n=1]) with median variant allele frequency (VAF) 10.5% (R, 5-27); 2 (50%) pts with germline *DDX41* ^{path} had R525H (VAF; 5% and 13%) and 1 (8%) pt each with germline *DDX41* ^{VUS} had R525H (VAF; 5%) and A376T (VAF 27%) somatic variants, respectively. Abnormal cytogenetics (CG) were observed in 2/13 evaluable (15%) pts ([+8 and del20q]) in the germline *DDX41* ^{path} group only (p= 0.05). ARCH co-mutations were observed in 11 (69%) pts, not significantly (NS) different between *DDX41* ^{path} (75%) and *DDX41* ^{VUS} (75%), p= 0.66. Individual co-mutations: *DNMT3A* (25% vs 16%, p= > 0.99), *ASXL1* (25% vs 8%, p=0.71), *TET2* (25% vs 8%, p= >0.99), and *JAK2* (0% vs 8%, p= >0.99) were NS different between the two groups.

Somatic mosaicism in DDX41-GPS patients with MN

Eight-three pts met criteria for MN ($DDX41^{\text{path}}$ [n=43] and $DDX41^{\text{VUS}}$ [n=40]; median age 67 yrs (range [R], 27-92), with a male predilection (58%). Fifty-four (65%) pts had MDS ($DDX41^{\text{path}}$ [55%] and $DDX41^{\text{VUS}}$ [45%], p=0.55) and 29 (35%) had AML ($DDX41^{\text{path}}$ [41%] and $DDX41^{\text{VUS}}$ [59%], p=0.65). Overall, 15 (18%) pts had somatic DDX41 MT; 12 (80%) pts with $DDX41^{\text{path}}$ and 3 (20%) pts with $DDX41^{\text{VUS}}$ (p=0.003). The median VAF of somatic DDX41 MT was 12% (R, 5-37), NS different between $DDX41^{\text{path}}$ (10.5%) and $DDX41^{\text{VUS}}$ (12%) (p=0.08). The most common somatic DDX41 MT was R525H (66% [n=10]), significantly associated with $DDX41^{\text{path}}$ (9/10 [90%]), p=0.01. ARCH was observed in 17 (20%) pts, significantly higher in $DDX41^{\text{path}}$ (76%)

POSTER ABSTRACTS

Session 637

compared to *DDX41* ^{VUS} (24%), p= 0.03. Abnormal CG were observed in 10/73 evaluable (14%) pts (-Y [n=2], del 20 [n=3], del 5q [n=2], del 7q [n=1], t (3;8) [n=1] and complex CG [n=1]), higher in *DDX41* ^{path} (70%) compared to *DDX41* ^{VUS} (30%) with p value >0.99.

We compared the spectrum of CH between DDX41 MT CH/CCUS and MN pts (**Table 1**) and found no difference in the proportion of pts with somatic DDX41 MT (p=0.52) and ARCH/myeloid MT (p=0.56). The individual occurrences of DNMT3A (p=0.49), ASXL1 (p=0.71), TET2 (p=0.59), JAK2 (p>0.99) and TP53 (p=0.56) mutations were NS different between the two groups (**Figure 1**).

Conclusion:

We define the somatic mosaic landscape in *DDX41*-MT GPS and demonstrate that somatic mutations involving the other allele, especially R525H, are seen in ~20% of pts (>80% of R525H present in MN). The frequency and composition of ARCH and myeloid driver mutations was lower than expected for the age of presentation, in comparison to *de novo* and secondary MDS/AML and occurred more frequently in *DDX41* ^{path} compared to *DDX41* ^{VUS}. Forty-two % (n=41), including 37% with MN, did not have somatic mosaicism, underscoring the fact that mechanisms of leukemia progression remain to be defined in subsets of affected pts.

Disclosures Foran: Roivant: Research Funding; BeiGene: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Actinium: Research Funding; Kura: Research Funding; Sellas: Research Funding; Novartis: Research Funding; Celgene: Research Funding; Astellas: Research Funding; NCI: Membership on an entity's Board of Directors or advisory committees; CTI: Membership on an entity's Board of Directors or advisory committees. **Alkhateeb:** Mayo Clinic: Current Employment. **He:** Kura Oncology, Inc: Consultancy. **Patnaik:** Stem-Line: Research Funding; Epigenetix: Research Funding; Kura: Research Funding; CTI BioPharma: Membership on an entity's Board of Directors or advisory committees.

https://doi.org/10.1182/blood-2023-187310

Variable	Overall (n=99)	CHIP/CCUS (N=16)
Gender (male), n (%)	60 (60%)	12 (75%)
DDX41 pathogenic	48 (48%)	4 (25%)
DDX41 VUS	51 (51%)	12 (75%)
Somatic DDX41	19 (19%)	4 (20%)
R525H	12 (12%)	3 (19%)
DDX41 somatic VAF %	12 [5-37]	10.5 [5-27]
Co-mutations	39 (39%)	11 (69%)
ASXL1	9 (9%)	2 (12.5%)
DNMT3A	12 (12%)	3 (19%)
TET2	4 (4%)	2 (12.5%)
JAK2	5 (5%)	1 (6%)
CBL	2 (2%)	1 (6%)
Spliceosome mutations	2 (2%)	0
IDH 1/2	2 (2%)	0
CEBPA	2 (2%)	0
TP53	2 (2%)	0
FLT3 ITD	1 (1%)	0
CSF3R	1 (1%)	0
RAS	1 (1%)	0
EZH2	4 (4%)	0
Abnormal cytogenetics ^a	14 (16%)	2 (15%)
NI	13	3

 NI
 13
 3
 10

 NI; no information available, VUS; variant of undetermined significance, VAF; variant allele frequency

^a2 patients had chromosomal abnormality without somatic co-mutations

Figure 1

Myeloid

Neoplasm (N= 83) 67 [27-92]

48 (58%)

43 (52%)

40 (48%)

15 (18%)

10 (12%)

12 [5-37]

28 (34%)

7 (8%)

8 (11%)

2 (2.5%)

4 (5%)

1 (1%)

2 (2.5%)

2 (2.5%)

2 (2.5%)

2 (2.5%)

1 (1%)

1 (1%)

1 (1%)

4 (5%)

10 (14%)

P value

0.89

0.69

0.003

0.01

0.52

0.78

0.67

0.56

0.71

0.49

0.59

>0.99

>0.99

0.55

0.55

0.56

0.56

>0.99

>0.99

>0.99

0.30

0.74